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An experimental and theoretical investigation of the flow and density distribution
arising from the upward turbulent injection of a dense fluid into a stratified environ-
ment of finite extent is presented. Initially, the rising fluid reaches a maximum height
before the flow reverses direction and intrudes either along the base of the tank or
at an intermediate height in the environment. As more dense fluid is added through
either a point or line source, both the fountain and the environment evolve with time.
We determine expressions for the motion of the ascending and descending ‘fronts’
that mark the vertical extent of the spreading layer. We also consider the changes to
the environmental density profile and determine an expression for the rate at which
the top of the fountain rises due to these changes. Finally, we apply our results
quantitatively to two physical problems: the replenishment of magma chambers and
the heating or cooling of a room.

1. Introduction
Turbulent fountains and plumes arise in a variety of environments, ranging from

large magma chambers in the Earth’s crust, to the interior of buildings, and to
the Earth’s oceans and atmosphere. In all of these examples, both the flow and
environment evolve with time as the presence of confining boundaries results in the
accumulation of injected fluid. As a result, previous investigations of fountains and
plumes have been aimed at understanding both the initial flow and the evolution of
the flow and environment in a region of finite extent (see table 1).

The continuous flow of a plume into a confined region containing an initially
homogeneous fluid was first analysed by Baines & Turner (1969). They determined the
changes to the environmental density profile resulting from the continuous addition
of buoyant fluid from both point and line sources. This problem subsequently became
known as a ‘plume filling box’ model. Similar filling box models have since been
applied to axisymmetric plumes in an initially stratified fluid (Cardoso & Woods
1993) and to fountains in initially homogeneous surroundings (Baines, Turner &
Campbell 1990).

The ‘fountain filling box’ models developed by Baines et al. (1990) describe the
flow of a dense fluid injected into a confined homogeneous region through both
axisymmetric and line sources. The initial flow of an axisymmetric fountain was first
described by Turner (1966), where the injected fluid reaches an initial height before
falling to the base of the tank and spreading as a thin layer. As the flow continues,
however, more dense fluid reaches the base of the tank causing the layer to increase
in thickness as the presence of the tank walls restricts the lateral spreading. Baines et
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Environment Plumes Fountains

Unconfined homo- Morton et al. (1956) Morton (1959); Turner (1966)
geneous

Unconfined stratified Morton et al. (1956) Morton (1959); Bloomfield & Kerr (1998)
Confined homogeneous Baines & Turner (1969) Baines, Turner & Campbell (1990)
Confined stratified Cardoso & Woods (1992) This study

Table 1. Some major contributions to the study of turbulent fountains and plumes.

al. (1990) developed expressions to quantify the motion of the ascending front which
marks the top of the layer, the changes to the ambient density profile and the rise of
the fountain height as a result of these changes.

More recently, Bloomfield & Kerr (1998) have examined the initial flow of a
fountain in a stratified fluid. In particular, they found that the strength of the
stratification determines whether the falling fluid spreads along the base of the tank
or intrudes at an intermediate height in the environment. In this paper, we aim to
develop ‘stratified filling box’ models to quantify the subsequent evolution of the
fountain and the environment when either basal or intermediate spreading occurs.

In § 2, we describe experimental observations of the flow from both axisymmetric
and line sources. Theoretical predictions of the time evolution of the fountain and
the ambient density profile are developed for axisymmetric fountains in § 3. These
predictions are then compared to experimental results under a range of different con-
ditions. A similar analysis for line fountains is then presented in § 4. Some illustrative
examples of the applications of these results to the replenishment of magma chambers
and to the heating or cooling of a room are discussed quantitatively in § 5. Finally in
§6 we present our conclusions and summarize the main results.

2. Qualitative observations
Axisymmetric fountains are produced in the laboratory by injecting dense fluid

upwards through a nozzle placed on the base of a tank containing stably stratified
fluid of lower density. The dense source fluid rises until the effect of gravity brings
it to rest at an initial height. This height is then reduced to a final value as the
flow reverses direction and the downflow interacts with the continued upflow. The
entrainment of lighter ambient fluid reduces the density of the fluid in the fountain.
Depending on the extent of this change in density, the downflow either spreads along
the base of the tank or intrudes at an intermediate height (Bloomfield & Kerr 1998).

In a homogeneous environment, the falling fluid reaches the base of the tank where
it spreads as a thin layer until restricted by the walls (Baines et al. 1990). The top
of the layer represents a density discontinuity in the environment, and this ascending
front rises as ambient fluid from above it is entrained into the downflow. As the
layer increases in thickness, the dense fluid that has accumulated below the front is
re-entrained back into the downflow of the fountain. Consequently, all subsequent
fluid arrives at the base of the tank even denser, and a weak, stable density gradient
is established in the environment below the front. The presence of the dense layer
reduces the density difference between the source fluid and its immediate environment,
and thus causes the fountain height to rise. However, the ascending front rises faster
than the fountain height, so that, eventually, it overtakes the top of the fountain.
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After this point, the fountain interacts only with the stratified layer, and the rise of
the front is controlled only by the rate at which source fluid is added.

In a weakly stratified environment with a sufficiently large buoyancy flux at the
source, the downflow still spreads along the base (Bloomfield & Kerr 1998) and
the subsequent behaviour is qualitatively similar to that observed in a homogeneous
environment. However, as the stratification increases and the buoyancy flux at the
source decreases, the spreading height rises from the base of the tank (figure 1a). In
this situation, the qualitative behaviour of the fountain height and the ascending front
remain unchanged from that observed in a homogeneous fluid (figure 1b, c). However,
an additional descending front at the bottom of the spreading layer moves towards
the base of the tank (figure 1b) as fluid from below it is entrained into the upflow
of the fountain. The formation of a second front in a stratified fluid is analogous
to the ‘plume filling box’ models in which one front is observed in a homogeneous
environment (Baines & Turner 1969) while two form in a stratified fluid (Cardoso &
Woods 1993).

When intermediate intrusion occurs, the changes to the ambient density profile also
contrast with those observed in an initially homogeneous fluid. The initial density of
the intruding layer is equal to that in the environment at the spreading height, so that
the environmental density profile is not significantly altered by the first, thin outflow.
Subsequent fluid which re-entrains this new layer therefore arrives at the spreading
height with approximately the same density. Consequently, the fountain effectively
homogenizes the initially stratified ambient fluid.

Similar qualitative behaviour is observed in line fountains. After rising to an
initial height, the flow reverses direction to fall on either side of the upflow. In
a homogeneous environment, the falling fluid spreads along the base of the tank
forming an ascending front above a stratified layer (Baines et al. 1990). As the
initial ambient density gradient increases, the spreading height rises from the base
and both ascending and descending fronts bounding a nearly homogeneous layer are
observed (figure 2a). However, during random periods, an instability in the flow causes
the downflow to be deflected to one side of the upflow, momentarily decreasing the
fountain height (figure 2b). The frequency of these fluctuations in the profile decreases
as the ambient stratification increases. In an initially stratified fluid, therefore, the
fountain profile remains predominantly symmetric until the homogenization of the
environment results in more frequent fluctuations.

3. Axisymmetric fountains
The investigation of axisymmetric fountains proceeds as follows. We begin by

describing the experimental apparatus and methods in § 3.1. In § 3.2 we briefly review
the initial fountain behaviour in an effectively infinite environment. We then proceed
in § 3.3 to analyse the flow in a confined environment, and the predicted results for
the fronts and the fountain height are compared with the experimental data. Finally,
in § 3.4, we develop a simple numerical model of the changes in the ambient density
profile with time, which is compared with our experimental measurements.

3.1. Experimental methods

The experiments were carried out in an acrylic tank which was 38 cm × 38 cm
in internal cross-section and 80 cm deep. The ambient linear density gradient, of
approximately 25 cm depth, was established with NaCl solutions using the double
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(a)

(b)

(c)

Figure 1. Photographs of an axisymmetric fountain with Qo = 4.5 × 10−5 m3 s−1, N = 1.7 s−1 and
∆o = 0. (a) When intermediate intrusion occurs, both ascending and descending fronts are observed
(t = 23 s). As the flow continues, (b), the descending front reaches the base of the tank (t = 2 min),
while in (c) the ascending front approaches the top of the fountain (t = 3 min 30 s).

bucket method (Oster 1965). The fluid densities were measured by refractometry to
within 0.1%, giving a relative error in the density gradient of approximately 1%.

The source fluid was placed in a 20 l bucket which was raised 1.5 m higher than
the main tank. The flow rate resulting from this gravitational head, which was kept
constant throughout an experiment, was measured with a flow meter to an accuracy
of 2–3%. The source fluid was injected upwards from the base of the tank through a
tube with an 8.8 mm inner diameter. Two sets of cross-hairs of 0.5 mm diameter were
positioned 3 mm and a further 44 mm from the tube outlet to ensure that the flow
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(a)

(b)

Figure 2. Photographs of a line fountain in which qo = 8.8× 10−5 m2 s−1, N = 0.75 s−1 and ∆o = 0.
(a) Intermediate intrusion again leads to the formation of two fronts (t = 21 s). (b) During random
intervals, the downflow is deflected to one side of the upflow (t = 47 s).

was turbulent from the source (Bloomfield & Kerr 1998). Using a method outlined
by Baines et al. (1990), measurements of the position of the descending front formed
by a weakly buoyant jet indicated that the position of the virtual point source was a
distance zv = 1.0 ± 0.2 cm below the base of the tank, and the effective source radius
was re = 4.16 ± 0.23 mm (Bloomfield & Kerr 1998).

The flows were observed using the shadowgraph method, and dye was introduced
into the input fluid to mark the extent of the spreading layer. Recording the flows on
video enabled the mean fountain height to be measured to within 0.5 cm, or 2–4%.

The density profile was measured during the experiment by stopping the flow and
withdrawing samples from a range of depths. The densities of these samples were
then measured by refractometry. It was observed that stopping and starting the flow
did not disturb the position of the fronts.
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3.2. The initial flow in an infinite environment

During the first stages of the flow in a stratified fluid, the initial, final and spreading
heights of the fountain are given by the expressions developed by Bloomfield &
Kerr (1998) for the flow in an infinite environment. These heights were found by a
dimensional argument to be

z = f(σ)M3/4
o F−1/2

o , (3.1)

where the dimensionless parameter, σ, is defined by σ = M2
oN

2/F2
o , ρiMo = Q2

o/(πr
2
e ) is

the momentum flux at the source, ρiFo = ρi∆oQo is the buoyancy flux at the source and
N2 = −(g/ρo)(dρ/dz) is the square of the buoyancy frequency. In these expressions, Qo
is the volume flux at the source, ∆o = g(ρi−ρo)/ρo, g is the gravitational acceleration,
z is the height above the source and ρ is the ambient fluid density, with ρo the density
at the base of the tank and ρi the density of the input fluid. By combining their
experimental results with those of Baines et al. (1990), it was found by Bloomfield &
Kerr (1998) that in the limits of small and large σ, the appropriate f(σ) for the initial,
final and spreading heights, respectively, are given by

fi(σ) =

{
2.65, σ < 0.1
3.25σ−1/4, σ > 40,

(3.2a)

ff(σ) =

{
1.85, σ < 0.1
3.00σ−1/4, σ > 40,

(3.2b)

and

fs(σ) =

{
0, σ < 5
1.53σ−1/4, σ > 40.

(3.2c)

For all values of σ, the simple functions

fi(σ) =
(
2.65−4 + 3.25−4σ

)−1/4
(3.3a)

and

ff(σ) =
(
1.85−4 + 3.0−4σ

)−1/4
(3.3b)

are a good fit to the experimental results (figure 3).

3.3. The motion of the fronts

To quantify the motion of the fronts, we make the simplifying assumption that
the intruding fluid spreads instantaneously as a thin layer at the height of neutral
buoyancy. In Appendix A we show that the assumption of instantaneous spreading
is a reasonable approximation, as the timescale of the intrusion is only a small
fraction of that of the vertical flow in the environment. The qualitative observation is
also made that, as the radial distance increases, the thickness of the outflow quickly
becomes small compared to the spreading height. These calculations and observations
combine to allow us to ignore the dynamics of the spreading layer in the following
analysis.

3.3.1. The descending front

The motion of the descending front can be found by writing the equation for the
conservation of volume flux in the region below the front. Hence, if the cross-sectional
area of the tank, A, is much greater than that of the fountain,

A
dzd
dt

= −Qd, (3.4)
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Figure 3. Experimental measurements of the initial (�) and final (N) fountain heights as a function
of σ. Also shown are the analytical functions given in (3.3) for the initial and final heights
respectively.

where zd(t) is the height of the front above the virtual point source and Qd is the
volume flux of fluid entrained into the fountain from below zd. An expression for the
total volume flux in the upflow of the fountain, Q(z), can be found from a solution
of the entrainment equations. These equations, which describe the conservation of
volume, b2ω, momentum, b2ω2, and buoyancy, b2ω∆, are (Turner 1973)

d

dz
(b2ω) = 2αbω,

d

dz
(b2ω2) = b2∆,

d

dz
(b2ω∆) = −b2ωN2, (3.5)

where α is the entrainment coefficient, b is the fountain radius, ω is the axial fluid
velocity, and ∆ is the buoyant acceleration of the fountain fluid. Equations (3.5) were
solved for the flow through the actual source (Qo 6= 0) with Qo, ∆o and N2 varied
over the range of experimental values. The solutions for the volume flux were then
compared with the corresponding result for a jet (Fo = 0, N2 = 0) showing, in all cases,
a difference of less than 1% at the respective spreading heights (see figure 4 for the σ =
∞ results). For all values of σ, therefore, the volume flux in the upflow of the fountain
can be approximated by the corresponding result for a jet. An analytical solution of
(3.5) for a jet, which satisfies the boundary conditions at the actual source gives

Q(z) = 2αQo
z − zv
re

+ Qo, (3.6)

where α = 0.076 ± 0.004 (Rodi 1982). Whenever intermediate intrusion occurs,
therefore, the entrained volume flux between zv and zd is

Qd = 2αQo
zd − zv
re

. (3.7)

To simplify this and subsequent expressions, we introduce the dimensionless heights,
z̃, and times, t̃, defined by

z̃ =
z

re
and t̃ =

Qot

Are
. (3.8)
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Figure 4. (a) Comparison between the volume flux in an axisymmetric jet in both homogeneous
(solid line) and stratified (broken line) surroundings in which σ = ∞, with (b) showing the small
difference in regions below the spreading height.

With the use of (3.7) and (3.8), (3.4) is integrated to give a solution for the height of
the descending front above the base of the tank:

(z̃d − z̃v) = (z̃s − z̃v)e−2αt̃, (3.9)

where z̃s is the dimensionless spreading height.
This exponential decrease in the height of the descending front contrasts with the

algebraic decrease in the height of the descending fronts formed by an axisymmetric
plume in either a homogeneous (Baines & Turner 1969) or a stratified fluid (Cardoso
& Woods 1993).

3.3.2. The ascending front

The motion of the ascending front, za(t), is determined by writing the expression
for the conservation of volume flux at the level of the front. Thus

A
dza
dt

= Qo + Qa, (3.10)

where Qa is the volume flux of ambient fluid entrained into the downflow from above
the front. Baines et al. (1990) described some experimental measurements made by T.
J. Reedman which indicated that, in a homogeneous fluid, the entrained volume flux
per unit height into the downflow of the fountain is constant and is given by

dQa
dz

= B
Qo

re
, (3.11)

where B was found experimentally to be B ≈ 0.25. Baines et al. (1990) also explained
that the observation of constant entrainment per unit height can be understood
by viewing the downflow as a line plume which encircles the upflow. In a linearly
stratified environment, the behaviour of a plume is little different to that in a uniform
fluid until close to the spreading height (Turner 1973; Cardoso & Woods 1993). As a
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Figure 5. Experimental measurements of the changing ambient density profile produced by an
axisymmetric fountain with Qo = 3.04 × 10−5 m3 s−1, N = 1.03 s−1 and ∆o = 0. Profiles were
measured at (a) t = 0 s, (b) t = 46 s, (c) t = 5 min 32 s and (d) t = 9 min 34 s.

result, (3.11) also accurately predicts the entrainment into the downflow of a fountain
in a stratified fluid. The total volume flux entrained between z̃a and z̃f is therefore

Qa =
BQo

re
(zf − za). (3.12)

Using (3.8), and introducing (3.12) into (3.10), leads to the general result that

dz̃a
dt̃

= 1 + B(z̃f − z̃a). (3.13)

This result is independent of the environmental conditions and so applies for all
values of σ.

After the ascending front has reached the top of the fountain at a time t∗, the
position of the front rises at the same rate as the free surface rises due to the addition
of fluid to the tank, so that dz̃a/dt̃ = 1. To integrate (3.13) for times t < t∗, we need
an expression for the increase in the fountain height with time.

3.3.3. The fountain height

In developing an expression for the fountain height, we must take into account two
separate effects. As discussed in § 2 and shown quantitatively in figure 5, the fountain
effectively homogenizes the initially stratified environment, while the addition of dense
source fluid increases the average ambient density. The environment of the fountain
quickly becomes mixed so that at small times (figure 5b), the decrease in the average
ambient density gradient over the height of the fountain is a more significant effect
than the increase in the average density. At large times, when the environment is
nearly homogeneous (figure 5c, d), the opposite is true. To determine the contribution
from each of these effects, we derive two expressions for the fountain height: zfs (t),
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which gives the rise due to the decreasing stratification, and zfh(t), which is based on
the results of Baines et al. (1990) for a fountain in a homogeneous fluid of increasing
density. The detailed derivation of these expressions, which is shown in Appendix B,
gives the result that:

z̃fs = z̃fs (0) +
3.0−4σo

1.85−4 + 3.0−4σo

z̃rs

4
t̃, (3.14a)

and

z̃fh = z̃fh(0) + 1
2
z̃rh t̃, (3.14b)

where z̃fs (0) is the height of the fountain at t̃ = 0, σo is the measured value of σ at
t = 0, z̃rs = z̃fs (0)/(z̃fs (0)− z̃v), z̃rh = z̃fh(0)/(z̃fh(0)− z̃v), and z̃fh(0) is defined in (B 9).

To quantify the fountain height at all times, we combine (3.14a) and (3.14b) into a
single expression for the fountain height which characterizes the transition from z̃fs

at small times to z̃fh as t̃→ t̃∗. A suitable expression for z̃f(t̃) is therefore

z̃f(t̃) = (1− w(t̃))z̃fs + w(t̃)z̃fh , (3.15)

where w(t̃) is a function which is equal to 0 at t̃ = 0 and becomes equal to 1 at t̃ = t̃∗.
A simple weighting function which quantifies the fraction of fluid below z̃f which is
homogeneous, and therefore satisfies the required limits, is given by

w =
z̃a − z̃d
z̃f − z̃v . (3.16)

Introducing (3.16) into (3.15) and solving for z̃f gives a final expression for the
fountain height:

z̃f = 1
2

(
z̃fs + z̃v

)
+
(

1
4

(
z̃fs + z̃v

)2
+ (z̃a − z̃d) (z̃fh − z̃fs

)− z̃v z̃fs

)1/2
. (3.17)

This expression can then be used in the numerical integration of (3.13) to give a
solution for the ascending front. Finally, from this result for z̃a, the position of the
fountain height can be calculated from (3.17).

3.3.4. Experimental results

The positions of the fountain height and the fronts were measured in a series of
experiments performed for a range of values of σ. The data from three of these experi-
ments are shown in figure 6 along with the result of integrating (3.13) for the ascending
front, the predicted position of the fountain height (3.17) and, where applicable, the
expression for the descending front (3.9). The fountain height at t̃ = 0 was determined
from (3.3b). The value of zs was estimated from graphs of previous experimental results
for the spreading height plotted against σ (for example, figure 7 in Bloomfield & Kerr
1998). In general, the good agreement between theory and experiment for the foun-
tain height and ascending front indicates that the assumptions made, and the simple
weighting function used, describe the actual fountain behaviour well. The experimen-
tal results indicate that the descending front falls slightly faster than predicted by (3.9).
This faster descent is almost certainly due to the effect of the additional entrainment
into the overshooting fluid below the front, which is not included in our model.

3.4. Ambient density profile

A simple numerical model based on that developed by Germeles (1979) is used to
quantify the changes to the environmental density profile. The initial linear gradient is
approximated by thin, discrete layers at heights z̃j and with thickness ∆z̃j = z̃j+1− z̃j .
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Figure 6. The non-dimensional height of the axisymmetric fountain (×) and the positions of
the fronts (�), as a function of time, together with the theoretical predictions (solid lines) for
the fountain height (3.17), the ascending front (3.13) and, where applicable, the descending front
(3.9). The experimental parameters were (a) Qo = 3.04 × 10−5 m3 s−1, N = 1.03 s−1; σ = ∞, (b)
Qo = 3.87 × 10−5 m3s −1, N = 1.22 s−1, ∆o = 0.23 m s−2; σ = 14, and (c) Qo = 3.25 × 10−5 m3 s−1,
N = 1.28 s−1, ∆o = 0.37 m s−2; σ = 4.

The decreasing density in successive layers therefore results in a stepped profile.
During any small time interval, ∆t̃, the volume entrained from any of these layers
into the upflow or downflow of the fountain can be found using (3.7) or (3.12)
respectively. This entrainment causes the thickness of the steps in the profile to be
reduced to

∆z̃′j = ∆z̃j −
{

2α∆t̃∆z̃j , z̃j < z̃d
B∆t̃∆z̃j , z̃d < z̃j < z̃f,

(3.18)

while the density at each step is unchanged. The positions of z̃d and z̃f in this stepped
profile are determined from (3.9) and (3.17), respectively.

The ambient fluid entrained into the fountain in the interval ∆t̃ mixes with the
injected source fluid, so that when the downflow reaches the point of intrusion, the
fountain fluid has a density, ρm, given by

ρm(Qo + Qe) = ρiQo +

∫ zf

zv

ρ(z)
dQe
dz

dz. (3.19)
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Figure 7. Ambient density profiles produced by an axisymmetric fountain, with the experimental
parameters listed in the caption to figure 5. The measured profiles at t = 0 (�), t = 46 s (•) and
t = 9 min 34 s (N) are shown in comparison with the numerical prediction (solid line).

For our stepped profile, and in terms of the dimensionless quantities defined in (3.8),

ρm =

ρi + 2α

z̃d∑
z̃j=z̃v

ρ(z̃j)∆z̃j + B

z̃f∑
z̃j=z̃d

ρ(z̃j)∆z̃j

1 + 2α

z̃d∑
z̃j=z̃v

∆z̃j + B

z̃f∑
z̃j=z̃d

∆z̃j

. (3.20)

The fluid with this density then flows laterally into the environment to form a new
layer of thickness

∆z̃′n =

(
1 + 2α

z̃d∑
z̃j=z̃v

∆z̃j + B

z̃f∑
z̃j=z̃d

∆z̃j

)
∆t̃. (3.21)

With each time step, therefore, the density profile can be updated to determine how
it evolves with time by reducing the thickness of the layers below z̃f and adding the
new layer at the correct step in the profile.

An example of the result of this procedure is compared to the experimental data in
figure 7. The initial step sizes were chosen to be ∆z = 1 mm, while ∆t was decreased
until ∆t = 1 s, after which further decreases did not change the final result. At
small times, the numerical results predict a much more homogeneous spreading layer
than that observed experimentally. The additional variation in the densities in the
spreading layer most probably arises from a combination of two effects-additional
mixing below the descending front, and the fact that the downflow has a range of
densities which leads to a range of intrusion heights. At later times, the agreement
between the numerical and experimental results is much better, with the numerical
results only slightly underestimating the density within the spreading layer.
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4. Line fountains
4.1. Experimental methods

To investigate the flow from a line source, we used the same tank as was employed
previously by Baines et al. (1990) and by Bloomfield & Kerr (1998). This acrylic
tank, which was 120 cm × 8 cm in internal cross-section and 60 cm deep, was filled
to a depth of approximately 40 cm. Two rolls of fly wire placed in the ends of
the tank acted as damping screens. These were necessary to prevent the formation
of a mixed layer in the environment as a result of the deflection of the spreading
layer as it reached the tank walls (Baines et al. 1990; Bloomfield & Kerr 1998). The
source, which was located centrally on the base of the tank and perpendicular to its
length, consisted of a circular pipe of 4 mm inner diameter with 31 holes of 0.6 mm
diameter spaced evenly along its length. The initial three-dimensional flow from these
holes should coalesce to two-dimensional flow at a height of approximately 1.5 cm
above the source (Crapper 1977). This prediction is in agreement with experimental
observations, which indicate a transition at 1–2 cm above the outlet of the holes. In
order to conserve momentum flux during this transition, the equivalent slot area must
be equal to the total effective area of the holes, and therefore depends on the velocity
profile at the source. Fully turbulent flow would give an area equal to the total
measured area of the holes, resulting in a slot width of 54.8 µm. The corresponding
result for laminar flow indicates a slot width of 5

6
× 54.8 µm = 45.7 µm. As the

momentum flux cannot be measured directly, a value of the effective slot width, bo,
was determined by performing an experiment with a weakly buoyant jet. Assuming a
‘top hat’ velocity profile in the jet, the elevation of the resulting descending front, zd,
is given by

z
1/2
d = H1/2 −

(
q2
oα

2boL2

)1/2

t, (4.1)

where H is the depth of fluid in the tank, qo is the volume flux per unit length of
the source, α = 0.074 ± 0.004 (Rodi 1982) is the two-dimensional jet entrainment
coefficient for a top hat profile and L is the length of the tank (Baines et al. 1990;
Bloomfield & Kerr 1998). The square root of the measured elevation of the descending
front is plotted against time in figure 8, showing the transition from the three-
dimensional flow at small heights to the linear relationship in the two-dimensional
regime. From the slope of the line, the effective slot width was determined to be
bo = 46.5±2.2 µm. This value indicates that the flow is virtually laminar at the source
for the flow rates of qo = (2−2.2)×10−4 m2 s−1 used in these experiments. The virtual
source was determined to coincide with the top of the nozzle, so that all heights in
this and subsequent experiments were measured above the outlet of the holes, which
were located a distance of ze = 1.4 cm above the base of the tank.

4.2. The initial flow in an infinite environment

Expressions for the initial, final (symmetric and asymmetric) and spreading heights
of a line fountain in an infinite environment were found by Bloomfield & Kerr (1998)
to be given by

z = f(σ∗)mof−2/3
o (4.2)

where the dimensionless parameter, σ∗, is defined by σ∗ = m2
oN

2/f2
o , ρimo = q2

o/(2bo)
is the initial momentum flux per unit length and ρifo = ρi∆oqo is the initial buoyancy
flux per unit length of the source.

Since the rise in the ascending front is very sensitive to the fountain height, we



40 L. J. Bloomfield and R. C. Kerr

0

0.6

0.4

0.2

50 100
t (s)

150 200 250

2–d

3–d

z1/2 (m1/2)

Figure 8. Elevation of the descending front formed by a line jet with qo = 2.2×10−4 m2 s−1, showing
the transition from three-dimensional flow to two-dimensional flow at a height of 2 cm above the
source. From the slope of the solid line, the effective slot width was found to be bo = 46.5± 2.2 µm.

performed twelve experiments to examine the function f(σ∗) at small values of σ∗.
For σ∗ = 0, our results are shown in figure 9. For the symmetric steady height, we
obtained a value of 0.95, not 1.3 as determined by Baines et al. (1990) and used
by Bloomfield & Kerr (1998). This discrepancy, and the corresponding differences in
values for the initial and asymmetric heights, are believed to be due to Baines et al.
(1990) using the external tank width to quantify qo. When the corrections for the
tank width are made, the results of Baines et al. (1990) agree, to within experimental
errors, with those determined here.

In addition, in our new experiments for small values of σ∗, the fountain heights
were found to be lower than those reported by Bloomfield & Kerr (1998). The
measurements reported in that study were of small fountains in which the flow
was observed to be axisymmetric for approximately 60% of the fountain heights. In
contrast, in our new experiments, the fountains were three times higher and the source
had twice as many holes. As a result, the flow in these fountains was axisymmetric
only over the lower 10% of the fountain height, and therefore should give an accurate
estimate of the height of a line fountain.

Figures 12(a) and 12(b) from Bloomfield & Kerr (1998) are replotted in figure 10
using the new asymptotic limits for a fountain in a homogeneous fluid. From these
new graphs, we find that in the limit of small and large σ∗,

fi(σ
∗) =

{
1.26, σ∗ < 0.6
2.46σ∗−1/3, σ∗ > 30,

(4.3a)

ff(σ
∗) =

{
0.95, σ∗ < 1.0

2.43σ∗−1/3, σ∗ > 100,
(symmetric){

0.72, σ∗ < 1.0

2.27σ∗−1/3, σ∗ > 100,
(asymmetric)

(4.3b)
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Figure 9. Experimental measurements of the initial (�), final symmetric (N) and final asymmetric
(4) fountain heights in a homogeneous fluid. The constant slopes of the lines for the three heights
are found to be 1.26 ± 0.08 for the initial height, 0.95 ± 0.05 for the final symmetric height and
0.72± 0.02 for the final asymmetric height.
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Figure 10. Measured heights of a two-dimensional fountain with our new asymptotic results and
the simple analytical f(σ) given in (4.4). (a) Initial height: as σ∗ → 0, f(σ∗)→ 1.25 and as σ∗ → ∞,
f(σ∗)→ 2.46σ∗−1/3. (b) Symmetric (N) and asymmetric (4) final height with the asymptotic results
and f(σ) for the symmetric height: as σ∗ → 0, f(σ∗)→ 0.95, and as σ∗ → ∞, f(σ∗)→ 2.43σ∗−1/3.

and

fs(σ
∗) =

{
0, σ∗ < 6
1.07σ∗−1/3, σ∗ > 100,

(4.3c)

for the initial, final and spreading heights, respectively. The experimental results
slightly overestimate the predicted asymptotic limit as σ∗ → 0, with this difference
being more significant for the initial fountain height. Also plotted in figure 10 are the
two simple functions

fi(σ
∗) =

(
1.26−3 + 2.46−3σ∗

)−1/3
(4.4a)
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and

ff(σ
∗) =

(
0.95−3 + 2.43−3σ∗

)−1/3
(4.4b)

which approximate the initial and final symmetric heights of a line fountain over the
entire range of values of σ∗.

4.3. The motion of the fronts and experimental results

Our analysis of line fountains again uses the assumptions that the intruding layer
spreads instantaneously as a thin layer at the height of neutral buoyancy. In this case,
however, the calculations in Appendix A indicate that the timescale of the lateral
outflow is a significant fraction of the time taken for the descending front to reach
the base of the tank. At small times, therefore, the dynamics of the outflow may affect
the motion of the descending front in particular.

An additional complication arises in line fountains due to the oscillations in the
fountain profile, which increase in frequency as the environment is homogenized. As
time progresses through an experiment, therefore, these fluctuations will have a more
significant effect on the overall evolution of the fountain height and the ascending
front.

4.3.1. The motion of the fronts

Using those arguments presented in § 3.3.1, we again assume that in our stratified
fluid, the upflow remains jet-like for a significant distance above the source. In terms
of the dimensionless parameters defined by

z̃ =
z

bo
and t̃ =

qot

Lbo
, (4.5)

(4.1) becomes

z̃
1/2
d = z̃1/2

s −
(α

2

)1/2

t̃. (4.6)

The descending front formed by a line fountain should therefore reach the level of
the source after a time t̃d = (2z̃s/α)

1/2. This result clearly contrasts with that for both
axisymmetric fountains and plumes in stratified fluids, where the descending front
only asymptotically approaches the level of the source.

The motion of the ascending front is again determined by the conservation of
volume flux at the level of the front. Thus

L
dza
dt

= qo + qa, (4.7)

where qa is the total volume flux per unit length entrained into the downflow between
the ascending front and the fountain height.

As a result of the fluctuations in the fountain profile, Baines et al. (1990) reported
difficulties in finding a satisfactory expression for the entrained volume flux into the
downflow. As a result, they made the assumption that qa has the same dependence
on height as the jet-like upflow (Baines et al. 1990, equation (43)). This leads to the
result that

dqa
dz

=
Bqo

2b
1/2
o z1/2

, (4.8)

where B was determined experimentally to range between 0.5 and 1.0, with an average
value of B ≈ 0.75 (Baines et al. 1990).
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In order to remain consistent with the results of Baines et al. (1990), we use
the same result for our flow in an ambient density gradient. The expression for the

entrained volume flux above the ascending front is therefore qa = Bqo(z
1/2
f −z1/2

a )/b
1/2
o .

Introducing this result into (4.7), along with the dimensionless quantities defined in
(4.5), leads to the result that

dz̃a
dt̃

= 1 + B(z̃
1/2
f − z̃1/2

a ). (4.9)

The rise of the fountain height is predicted using the same assumptions and
method that were presented in § 3.3.3 and Appendix B for an axisymmetric fountain.
The details are again given in Appendix B, with the final result that

z̃fs = z̃fs (0) +
2.43−3σ∗o

0.96−3 + 2.43−3σ∗o

t̃

3
, (4.10a)

and

z̃fh = z̃fh(0) + 2
3
z̃r t̃, (4.10b)

where z̃r = z̃fh(0)/(z̃fh(0) + z̃e) (Baines et al. 1990), z̃fs (0) is the symmetric fountain
height at t̃ = 0, and z̃fh(0) is defined in (B 13).

Finally, the weighting function which quantifies the transition between (4.10a) and
(4.10b), is again given by (3.16), with z̃v = 0. It therefore follows that the final
expression for the fountain height is also given by (3.17), with z̃fs and z̃fh defined
by (4.10a) and (4.10b) respectively. This expression for z̃f can then be used in the
numerical integration of (4.9) to find the position of the ascending front.

4.3.2. Experimental results

The position of the fountain height, the ascending front and the descending front
were measured in three experiments in which σ∗ was varied. These results are shown
in figure 11, along with the predicted position of the top of the fountain, the ascending
front and, where applicable, the descending front. The fountain height at t = 0 is
found from a combination of (4.2) and (4.4b), while the spreading height was taken
from the experimental measurements. In figures 11(a) and 11(b), the position of the
descending front is well described by (4.6) until it approaches to within approximately
2 cm (z̃ ≈ 430) of the source. After this point, the environmental fluid is entrained
into the initial axisymmetric flow from the holes, and consequently, the exponential
decay predicted for axisymmetric flow can be observed. In figure 11(a), the position of
the fountain height is slightly overestimated by the theoretical prediction. In contrast,
in figures 11(b) and 11(c), in which the profile fluctuates significantly, (3.17) represents
a good average of the measured heights. Using the average value of B = 0.75 in
all experiments provides good predictions of the motion of the ascending front, and
enables accurate estimates of the time t∗ when the front reaches the height of the
fountain.

4.4. Ambient density profile

The numerical method which was used in § 3.4 to quantify the changes to the
ambient density profile can be adapted for a line fountain with few alterations. The
reduction in the thickness of each layer in the density profile is found by using

qd = (α/2)1/2q0z
1/2
d /b

1/2
0 or qa = Bq0(z

1/2
f − z1/2

a )/b
1/2
0 to determine the volume of
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Figure 11. Experimental measurements of the fountain height (×) and the fronts (�) along with
the theoretical predictions (solid line) for the fountain height (3.17), the ascending front (4.9) and,
where applicable, the descending front (4.6): (a) qo = 2.19 × 10−4 m2 s−1, N = 1.38 s−1; σ∗ = ∞;
(b) qo = 2.19 × 10−4 m2 s−1, N = 0.71 s−1, ∆o = 0.34 m s−2; σ∗ = 21; (c) qo = 2.19 × 10−4 m2 s−1,
N = 0.32 s−1, ∆o = 0.31 m s−2; σ∗ = 5.2.

fluid removed in each time interval ∆t̃. We therefore obtain the result that

∆z̃′j = ∆z̃j −
 (α/2)1/2

(
(z̃j + ∆z̃j)

1/2 − z̃1/2
j

)
∆t̃, z̃j < z̃d

B
(

(z̃
1/2
j + ∆z̃j)

1/2 − z̃1/2
j

)
∆t̃, z̃d < z̃j < z̃f.

(4.11)

It is possible in this case that for layers near the base, this calculation may result in a
negative thickness. The program was therefore adapted to check for and prevent this
occurring.

The fluid entrained from the layers mixes into the fountain so that the final density
of the downflow at the point of intrusion is

ρm =

ρi + (α/2)1/2

z̃d∑
z̃j=0

ρ(z̃j)
(

(z̃j + ∆z̃j)
1/2 − z̃1/2

j

)
+B

z̃f∑
z̃j=z̃d

ρ(z̃)
(

(z̃j + ∆z̃j)
1/2 − z̃1/2

j

)

1 + (α/2)1/2

z̃d∑
z̃j=0

(
(z̃j + ∆z̃j)1/2 − z̃1/2

j

)
+ B

z̃f∑
z̃j=z̃d

(
(z̃j + ∆z̃j)1/2 − z̃1/2

j

) .

(4.12)
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Figure 12. Comparison between the numerical results (solid line) and the measured ambient density
profiles produced by a line fountain, with the experimental parameters listed in the caption to figure
11(a). Profiles were measured at t = 0 (�), t = 60 s (•) and t = 13 min (N).

The new layer with this density has a thickness of

∆z̃′n =

(
1 + (α/2)1/2

z̃d∑
z̃j=0

(
(z̃j + ∆z̃j)

1/2 − z̃1/2
j

)

+B

z̃f∑
z̃j=z̃d

(
(z̃j + ∆z̃j)

1/2 − z̃1/2
j

))
∆t̃. (4.13)

Using the same procedure, initial step size and time interval described in § 3.4
for an axisymmetric fountain, the profile is then updated at each time step. An
example of these numerical results is shown in comparison to the experimental
measurements of a profile in figure 12. At intermediate times, the theory again predicts
a more homogeneous environment than that measured experimentally. The neglect
of additional mixing and density variation in the downflow again result in some
difference (§ 3.4), but in the case of a line fountain, the fluctuations in the fountain
profile also lead to differences between the numerical predictions and experimental
measurements. At large times the agreement is seen to be good.

5. Applications
We now present three quantitative examples of how the results of this study can

be applied to physical problems.

5.1. The heating or cooling of a room

In an enclosed room, axisymmetric turbulent fountains may arise either when hot air
is forced down through the ceiling into a cold room or when cool air is forced up
through the floor into a hot room. In domestic situations, it is often preferable to
quickly heat or cool the lower, inhabited part of the room. The time taken for the
respective fountains to heat or cool the area near the floor, as well as the resulting
temperature profile, can be found using the calculations described in § 3.3 and § 3.4.
In the following quantitative analysis, we assume a closed system in which air is
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Heating

Ti(
◦C) σ zf(0) (m) Time when Temperature profile (◦C)

za = 4 m (min) (floor – ceiling)

20 30 3 21 17
22 8 2.7 32 17.25–17.75
24 3 2.4 41 20–20.5

Cooling

Ti(
◦C) σ zf(0) (m) Time when Temperature profile (◦C)

za = 2 m (min) (floor – 2 m)

20 5 2.5 6 24.9
15 1 2 9 23–25
10 0.5 1.6 14 20–23

Table 2. Properties of the fountain and the ambient temperature profile in the two cases of
heating and cooling an initially stratified room.

removed from the room through vents on the floor (when heating) or the ceiling
(when cooling) at the same rate at which the heated or cooled air is injected again
through the other vent as a fountain. This positioning of the outflow vents ensures
that the removal of air does not interfere with the dynamics of the fountain.

For these illustrative examples, we have considered a room 4 m high and 5 m × 5 m
in area, with rectangular vents of area Av = 0.01 m2 in the floor and the ceiling. The
air is injected and removed through these vents at a flow rate of Qo = 0.02 m3 s−1.

5.1.1. Heating a cold room

To completely heat a room using warm air injected through the ceiling, the ascend-
ing front, which is moving down, must reach the floor. In this example, we consider a
room in which the ambient temperature at the floor, Tf = 14 ◦C, increases at a rate
of 1 ◦C m−1 to 18 ◦C at the ceiling. The buoyancy frequency is then calculated using a
thermal expansion coefficient of β ≈ 1

300
K−1 to be N = 0.18 s−1. In table 2, we show

the effect of varying the temperature of the injected air on both the time taken to heat
the room to floor level, and the final ambient temperature. These calculations show
that the floor level is heated in only 21 minutes when the injected air is only slightly
warmer than the ambient at the ceiling (Ti = 20 ◦C). However, this case results in
a modest increase in the overall ambient room temperature to 17 ◦C. In contrast, if
the temperature of the injected air is increased to Ti = 24 ◦C, the room is heated to
20.25 ◦C, although the time taken is almost doubled (t = 41 min).

5.1.2. Cooling a hot room

To cool the lower regions of a room, cold air is injected upwards through the vent
in the floor. In this example, the ambient temperature of Tf = 25 ◦C at the floor
increases with height at a rate of 1 ◦C m−1 to again give a buoyancy frequency of N
= 0.18 s−1. In this case, it is preferable that the downflow spreads along the floor to
create a layer of air which is colder than that originally in the room. It was found
by Bloomfield & Kerr (1998) that this condition is satisfied for Ti < 20 ◦C. In table
2, we show how varying the temperature of the injected air affects the time taken to
fill the room with cold air to a depth of 2 m. Also shown is the resulting temperature
profile within this lower 2 m region. When the temperature of the injected air is Ti =
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20 ◦C, the air in the lower 2 m of the room is mixed to a homogeneous temperature
of T = 24.9 ◦C in only 6 min, but little cooling occurs. When the injected air has a
temperature of Ti = 10 ◦C, it takes 14 min to cool the lower 2 m to a temperature of
between 20 ◦C at the floor and 23 ◦C at a height of 2 m.

5.2. The replenishment of magma chambers

Hot magma that rises through the Earth’s crust can pond in large chambers (Camp-
bell & Turner 1989). These chambers, which can be density stratified, can then be
replenished by the inflow of magma through a fissure at their base, forming a tur-
bulent line fountain. Our results from § 4 may be used to predict some of the main
properties of the evolution of the chamber. In particular it is possible to calculate
the time at which the descending front reaches the base and to estimate the time at
which the ascending front passes the top of the fountain.

We consider here fissure widths of d = 1 m, 3 m and 10 m, and a fixed input magma
density of ρi = 2650 kg m−3. An expression for the flow rate through a fissure is given
by

qo =

(
g∆ρ

fρi

)1/2

d3/2, (5.1)

where ∆ρ is the average density difference between the input magma and the wall
rocks of the fissure and f is a friction coefficient (Huppert & Sparks 1985). Probable
values of ∆ρ = 300 kg m−3 and f = 0.03 are used here.

The size of magma chambers varies, but for these calculations we consider a large
chamber 100 km in length and several kilometres deep. Within the chamber, we
assume a density variation from 2640 kg m−3 at the floor to 2620 kg m−3 at the top
of the stratified region, of around 1 km depth. This variation of 20 kg m−3 gives a
buoyancy frequency of N = 8.6× 10−3 s−1. Above this stratified region, the density of
the magma is assumed to be constant at 2620 kg m−3 (see Bloomfield & Kerr 1998,
§ 5.2, case III).

The final height of the fountain immediately after injection can be found from
(4.2) and (4.4b), while the spreading height can be determined from the experimental
results of Bloomfield & Kerr (1998). The time taken for the descending front to reach
the base of the chamber is td = (2zsboL

2/αq2
o)

1/2. To estimate t∗, the time at which the
ascending front passes the top of the fountain, the same numerical computation as
that performed in § 4.3.1 is required. The results of these calculations are presented in
table 3. For the smallest fissure, the fountain takes the longest time (t∗ = 8 days) to
homogenize only a small region of the chamber (za(t

∗) = 107 m). In contrast, for the
largest fissure, it takes only 1.7 days to form a homogeneously mixed layer of depth
793 m. The evolution of the magma chamber with time for this case of the largest
fissure width is shown in figure 13.

Another geologically important property of the chamber evolution is the volume
ratio of magma added to magma which has accumulated in the mixed layer (table
3). When the injected and ambient magmas have different compositions (eg. olivine-
saturated and plagioclase-saturated magmas), this mixing ratio is needed to determine
the final composition, and hence the properties, of magma in the mixed layer. The
mixing ratios of around 40% found in our calculations would result in a mixed
magma which is significantly undersaturated in both olivine and plagioclase. This
mixed magma would have erosive properties (Kerr 1994), leading to further evolution
of the chamber and surrounding rocks.
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Figure 13. Evolution of the density profile inside a magma chamber with the properties described
in §5.2 and bo = 5 m. Times at which the profile is calculated are: t = 0 (—), t = 0.8 days (- - ),
t = 1.7 days (-·-·) and t = 3.4 days (....).

d = 1 m d = 3 m d = 10 m

qo(m
2 s−1) 6.1 31.6 192

σ∗ 2 6 20
zf (m) 91 257 730
zs (m) 0 0 243
td (h) 0 0 26
t∗ (days) 8 4.3 1.7
za(t

∗) (m) 107 298 793
volume added/volume in layer 0.39 0.40 0.35

Table 3. Properties of line fountains in a magma chamber.

6. Conclusions
We have presented an experimental and theoretical investigation into the evolution

of turbulent axisymmetric and line fountains, and their effect on an initially stratified
ambient density profile. In this study, we have expanded the previous work by
Bloomfield & Kerr (1998) to show that the evolution of the fountain and the
environment depends on whether intermediate or basal spreading occurs, and hence
whether one or two fronts, respectively, are observed.

We have shown that the ambient density profile has little effect on the motion of
the fronts. For the descending front, this assumption was verified after comparing
experimental data with analytical predictions for jet-like flow. Similarly, comparison
with experimental results for the ascending front lead to the conclusion that the rate
of entrainment into the downflow of the fountain can be quantified using the same
constant as that determined in a homogeneous fluid. The motion of the ascending
front therefore depends directly on only the position of the top of the fountain. To
quantify the rise of the fountain height, we first estimated the individual effects of
the decreasing ambient density gradient and the increasing average ambient density.
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A simple weighting function based on the thickness of the spreading layer relative
to the fountain height was then used to quantify the contribution from each of these
effects to the overall rise of the fountain height. A numerical solution of the equations
of motion then gave the position of the fountain height and the ascending front.

For axisymmetric fountains, the theory provided an accurate prediction of the
position of the fountain height and the ascending front. However, the fluctuations in
the profile of a line fountain resulted in significantly more scatter of the experimental
data around the average position predicted by the theory.

Once the time evolution of the axisymmetric and line fountains is known, we
have shown how a simple numerical scheme can then be used to quantify the
homogenization of the initially stratified environment. The results of these numerical
calculations accurately predicted the changes to the ambient density distribution,
particularly at later times.

Finally, we have outlined three illustrative examples of how the results of this study
can be applied quantitatively to physical problems. The time evolution of a magma
chamber due to the inflow of dense magma and the heating or cooling of a small
room have been calculated for typical source and environmental parameters.

We thank Tony Beasley, Derek Corrigan and Ross Wylde-Browne for their technical
assistance with the experiments. The financial support of an Australian Research
Council Fellowship (for R. K.) and of a John Conrad Jaeger Scholarship (for L. B.)
are gratefully acknowledged.

Appendix A. The timescales for lateral intrusion and vertical advection
For both axisymmetric and line fountains, the models for the motion of the fronts

are valid only if the intrusion of the fluid into the environment occurs on a significantly
smaller timescale than that taken for the descending front to fall to a small fraction
of its initial height. In this Appendix, we determine the effect of the tank size and
source conditions on these two timescales to determine the validity of our assumption
of instantaneous intrusion. The following analysis applies only to the situations in
which intrusion occurs at an intermediate height in the environment.

A.1. Axisymmetric fountains

Following the analysis presented by Cardoso & Woods (1992) for a plume in a
stratified fluid, we use several simplifying assumptions to determine expressions for
the dynamics of the intruding fluid. As the downflow reaches the spreading height,
the flow into the intruding layer is still turbulent. However, we shall assume that
the ambient stratification quickly damps this turbulence, so that little mixing occurs
between the spreading layer and the environment. The dynamics of the intruding
layer may then simply be described by a Froude number,

Fr = v/Nd, (A 1)

where v is the horizontal velocity of the fluid in the layer and d is its thickness
(figure 14). It was shown by Manins (1979) that the Froude number in the outflow is
approximately constant with a lower bound of 2−1/2.

We make the assumption that the velocity of the descending front is horizontally
constant and is equal to Us. From the conservation of volume we therefore write the
horizontal volume flux at a distance r from the fountain axis as

Q(r) = 2πrvd = Qs −Usπ(r2 − a2
s ), (A 2)
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Figure 14. Geometry illustrating the outflow of fluid into the spreading layer.

where as is the fountain radius at the spreading height and Qs is the volume flux into
the intruding layer at r = as. To simplify the analysis, we consider a tank of circular
cross-section with radius R, so that the area, πR2, is equal to the area of our tank, A.
As there can be no flow through the walls of the tank, Q(R) = 0. This result can be
used to eliminate Us from (A 2) giving

Q(r) = 2πrdv = Qs

(
R2 − r2

R2 − a2
s

)
. (A 3)

Introducing (A 1) in (A 3), we find the radial dependence of d and v:

d =

(
Qs

2πrFrN

(
R2 − r2

R2 − a2
s

))1/2

(A 4a)

v =

(
FrNQs

2πr

(
R2 − r2

R2 − a2
s

))1/2

. (A 4b)

The time taken for fluid to spread from r = as to r = R is therefore

t1 =

∫ R

as

dr

v
=

(
2π(R2 − a2

s )

FrNQs

)1/2 ∫ R

as

(
r

R2 − r2

)1/2

dr. (A 5)

After making the substitution r = R sin θ and letting as → 0, (A 5) is integrated
numerically to give the same result as that obtained by Cardoso & Woods (1992):

t1 =

(
4πR3

FrNQs

)1/2 ∫ π/2

0

sin1/2 θ dθ ≈ 1.2

(
2πR3

FrNQs

)1/2

. (A 6)

The volume flux of fluid added to the spreading layer is given by

Qs = Qo + Q1 + Q2, (A 7)

where Q1 = 2αQo(zs − zv)/re is the volume flux entrained into the jet-like flow below
the spreading height and Q2 = BQo(zf − zs)/re is the volume flux entrained into the
downflow of the fountain (figure 13). The first term in (A 7) is negligible in these
experiments, so that

Qs ≈ (Qo/re)
(
2α(zs − zv) + B(zf − zs)) . (A 8)
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We chose the time taken for the position of the descending front to fall from its
initial height above the base, zs − zv , to a height of e−2(zs − zv) ≈ 0.1(zs − zv) to
represent the vertical advection in the tank, t2:

t2 = (Are/αQo). (A 9)

Using (A 8) and a value of Fr = 2−1/2, the ratio of (A 6) to (A 9) becomes

(t1/t2) = 0.09(Qo/NreR)1/2(2α(zs − zv) + B(zf − zs))−1/2. (A 10)

This ratio is valid while the fluid intrudes at an intermediate height, that is for σ
in the range σc < σ < ∞. For the source parameters in the experiments performed,
we obtain values of t1/t2 ≈ 0.08. This small value indicates that the assumption of
instantaneous spreading is valid in our experiments.

A.2. Line fountains

A similar analysis is used to determine the timescale of lateral intrusion for a line
fountain. Conservation of horizontal volume flux in the spreading layer on one side
of the upflow at a distance x from the fountain axis gives

q(x) = dv = 1
2
qs −Us(x− as), (A 11)

where qs is the total volume flux in the outflow at the spreading height. Expressions
for the thickness and velocity within the spreading layer are obtained by combining
(A 1) with (A 11) under the condition that q = 0 at x = L/2 = l:

d =

(
qs

2NFr

(
l − x
l − as

))1/2

(A 12a)

v =

(
NFrqs

2

(
l − x
l − as

))1/2

. (A 12b)

The time taken for the fluid to spread from x = as to x = l is

t1 =

∫ l

as

dx

v
=

(
2(l − as)
NFrqs

)1/2 ∫ l

as

dx

(l − x)1/2
. (A 13)

In the limit as as → 0, this is integrated to give

t1 =

(
8l2

NFrqs

)1/2

. (A 14)

The volume flux of fluid into the spreading layer is again given by qs = qo + q1 + q2

with q1 = (2αq2
ozs/bo)

1/2 and q2 = Bqo(z
1/2
f − z1/2

s )/b
1/2
o , so that

qs = qo
(
1 + (2αzs/bo)

1/2 + B(z
1/2
f − z1/2

s )/b1/2
o

)
≈ qo

(
(2αzs)

1/2 + B(z
1/2
f − z1/2

s )
)
/b1/2

o . (A 15)

A typical timescale for the vertical motion in the ambient fluid is the time taken
for the descending front to reach the base of the tank:

t2 =
(
8l2bozs/αq

2
o

)1/2
. (A 16)
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Using (A 15) and a value of Fr = 2−1/2, the ratio of (A 14) to (A 16) becomes

t1

t2
= 0.32

(
qo

Nb
1/2
o zs((2αzs)1/2 + B(z

1/2
f − z1/2

s ))

)1/2

. (A 17)

Using our experimental parameters, we obtain the result that t1/t2 ≈ 0.4–0.5. The
assumption of instantaneous spreading may therefore introduce some deviation be-
tween the theory and experiments. In particular, at small times, the variation in the
thickness of the outflow makes it difficult to accurately measure the position of the
fronts. This effect was reduced, but not eliminated, by measuring the height of the
fronts close to the axis of the fountain.

Appendix B. Derivation of the expressions for the fountain height
To determine an expression for the rise of the fountain height, we quantify separately

the rise due to the decreasing stratification, zfs(t), and the rise due to the increasing
mean ambient density, zfh(t).

B.1. Axisymmetric fountain height

To quantify zfs (t), the average ambient density gradient over the height of the fountain
is approximated by

dρ

dz
(t) =

ρzf (t)− ρo
zfs − zv , (B 1)

where ρzf (t) is the ambient density at the level of the top of the fountain, which is at
a height (zfs − zv) above the base of the tank. At small times, a good approximation
for ρzf is obtained by assuming that all ambient density levels above the ascending
front rise at the same rate as the free surface (see figure 5b). The position of a thin
layer which is initially at a height zo is therefore given by z(t) = zo + Qot/A. When
this layer reaches zfs , ρzf = ρo + (dρ/dz)|o (zo − zv), giving

ρzf = ρo +
dρ

dz

∣∣∣∣
o

(
zfs − zv − Qot

A

)
, (B 2)

where (dρ/dz)|o is the initial density gradient. As a first approximation for zfs , we use
(B 2) to quantify ρzf (t) for all times. Combining (B 1) and (B 2), we therefore obtain

an expression for N2(t):

N2(t) = N2
o

zfs − zv − Qot/A
zfs − zv , (B 3)

where No is the initial buoyancy frequency. Introducing (B 3) into the definition of σ,
and combining (3.1) and (3.3b) leads to the result that

zfs =

(
1.85−4 + 3.0−4σo

zfs − zv − Qot/A
zfs − zv

)−1/4

M3/4
o F−1/2

o , (B 4)

where σo = M2
oN

2
o/F

2
o . Rearranging this expression gives the final result that

zfs = zfs (0)

(
1− 3.0−4σo

1.85−4 + 3.0−4σo

Qot/A

zfs − zv
)−1/4

. (B 5)
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The approximation that zfs varies by only a small fraction of its initial value allows us
to replace zfs by zfs (0) on the right-hand side of (B 5). In terms of the dimensionless
quantities defined in (3.8), and at small times (i.e. when t̃� z̃fs ) therefore

z̃fs ≈ z̃fs (0) +
3.0−4σo

1.85−4 + 3.0−4σo

z̃rs

4
t̃, (B 6)

where z̃rs = z̃fs (0)/(z̃fs (0)− z̃v).
This expression gives a first correction to quantify how z̃fs increases from its initial

value at small times. By the time any significant deviations from (B 6) arise, the
environment is predominantly homogeneous, and zfh(t) better describes the rise of
the fountain height.

An expression for zfh(t) is obtained by assuming that the ambient fluid below this
height is homogeneously mixed, and then using (3.1) combined with (3.2b) to find
the height to which the fountain would rise in a fluid with this density. If ρ̄o is the
average environmental density at t = 0, and the fountain reaches a height zfh(0) in
this homogeneous fluid, then

ρ̄o = ρo +
dρ

dz

∣∣∣∣
o

(zfh(0)− zv)
2

. (B 7)

The initial buoyant acceleration of the source fluid is found using the definition of
Baines et al. (1990) to be

∆̄o =
g(ρi − ρ̄o)

ρ̄o
=

∆o +N2
o (zfh(0)− zv)/2

1−N2
o (zfh(0)− zv)/(2g)

. (B 8)

Using this definition of ∆̄o in (3.1) and (3.2b), we obtain an equation which can be
solved numerically for zfh(0):

zfh(0) = 1.85M3/4
o Q−1/2

o

(
1−N2

o (zfh(0)− zv)/(2g)

∆o +N2
o (zfh(0)− zv)/2

)1/2

. (B 9)

In a homogeneous fluid, Baines et al. (1990) have shown both experimentally and
theoretically that the fountain height rises at close to half the rate at which the
free surface rises due to the inflow. If the same theoretical arguments are applied to
estimate zfh , then the equivalent result is

z̃fh = z̃fh(0) + 1
2
z̃rh t̃, (B 10)

where z̃rh = z̃fh(0)/(z̃fh(0)− z̃v).

B.2. Line fountain height

The derivation of an expression for the height of a line fountain follows the same
procedure as that outlined above for axisymmetric fountains. First, we quantify zfs (t)
– the rise of the fountain height at small times due to the decrease in the average
buoyancy frequency of the environment. The change in N2(t) is again given by (B 3),
without the virtual source correction. Combining (B 3) with (4.2) and (4.4b), and using
the dimensionless forms of z and t, we obtain the result that

z̃fs = z̃fs (0)

(
1− 2.43−3σ∗o

0.96−3 + 2.43−3σ∗o

t̃

z̃fs

)−1/3

. (B 11)
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At small times, therefore,

z̃fs = z̃fs (0) +
2.43−3σ∗o

0.96−3 + 2.43−3σ∗o

t̃

3
, (B 12)

where z̃fs (0) is taken to be the dimensionless symmetric height, since the profile is
predominantly symmetric at small times.

Second, to obtain an expression for the rise of the fountain due to the increasing
average ambient density, zfh(t), we need to determine zfh(0). The initial buoyant
acceleration of the source fluid is again given by (B 8) with zv = 0, so that an implicit
expression for zfh(0) is found from a combination of (4.2) and (4.3b) to be

zfh(0) =
1
2
(0.96 + 0.77)m

2/3
o

21/3b
1/3
o

(
1−N2

ozfh(0)/(2g)

∆o +N2
ozfh(0)/2

)2/3

. (B 13)

In this expression, the average of the symmetric and asymmetric heights has been
used, since the fountain in a homogeneous fluid continually fluctuates between a
symmetric and an asymmetric profile. To quantify the fountain height at later times,
we use the result that in a homogeneous fluid, the dimensionless fountain height rises
at a rate given by

z̃fh = z̃fh(0) + 2
3
z̃r t̃. (B 14)

where z̃r = z̃fh(0)/(z̃fh(0) + z̃e) (Baines et al. 1990).
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